Efficient machine translation decoding with slow language models

نویسنده

  • Ahmad Emami
چکیده

Efficient decoding has been a fundamental problem in machine translation research. Usually a significant part of the computational complexity is found in the language model cost computations. If slow language models, such as neural network or maximum-entropy models are used, the computational complexity can be so high as to render decoding impractical. In this paper we propose a method to efficiently integrate slow language models in machine translation decoding. We specifically employ neural network language models in a hierarchical phrase-based translation decoder and achieve more than 15 times speed-up versus directly integrating the neural network models. The speed-up is achieved without any noticeable drop in machine translation output quality, as measured by automatic evaluation metrics. Our proposed method is general enough to be applied to a wide variety of models and decoders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Machine Translation System Based on a Monotone Decoder

In this paper, a hybrid Machine Translation (MT) system is proposed by combining the result of a rule-based machine translation (RBMT) system with a statistical approach. The RBMT uses a set of linguistic rules for translation, which leads to better translation results in terms of word ordering and syntactic structure. On the other hand, SMT works better in lexical choice. Therefore, in our sys...

متن کامل

Forest Rescoring: Faster Decoding with Integrated Language Models

Efficient decoding has been a fundamental problem in machine translation, especially with an integrated language model which is essential for achieving good translation quality. We develop faster approaches for this problem based on k-best parsing algorithms and demonstrate their effectiveness on both phrase-based and syntax-based MT systems. In both cases, our methods achieve significant speed...

متن کامل

Efficient Incremental Decoding for Tree-to-String Translation

Syntax-based translation models should in principle be efficient with polynomially-sized search space, but in practice they are often embarassingly slow, partly due to the cost of language model integration. In this paper we borrow from phrase-based decoding the idea to generate a translation incrementally left-to-right, and show that for tree-to-string models, with a clever encoding of derivat...

متن کامل

The Correlation of Machine Translation Evaluation Metrics with Human Judgement on Persian Language

Machine Translation Evaluation Metrics (MTEMs) are the central core of Machine Translation (MT) engines as they are developed based on frequent evaluation. Although MTEMs are widespread today, their validity and quality for many languages is still under question. The aim of this research study was to examine the validity and assess the quality of MTEMs from Lexical Similarity set on machine tra...

متن کامل

Efficient Multi-Pass Decoding for Synchronous Context Free Grammars

We take a multi-pass approach to machine translation decoding when using synchronous context-free grammars as the translation model and n-gram language models: the first pass uses a bigram language model, and the resulting parse forest is used in the second pass to guide search with a trigram language model. The trigram pass closes most of the performance gap between a bigram decoder and a much...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015